Regulation of Cell Division
Coordination of cell division

- A multicellular organism needs to coordinate cell division across different tissues & organs
 - critical for normal growth, development & maintenance
 - coordinate timing of cell division
 - coordinate rates of cell division
 - not all cells can have the same cell cycle
Frequency of cell division

- Frequency of cell division varies by cell type
 - **embryo**
 - cell cycle < 20 minute
 - **skin cells**
 - divide frequently throughout life
 - 12-24 hours cycle
 - **liver cells**
 - retain ability to divide, but keep it in reserve
 - divide once every year or two
 - **mature nerve cells & muscle cells**
 - do not divide at all after maturity
 - permanently in G_0
Overview of Cell Cycle Control

- Two irreversible points in cell cycle
 - replication of genetic material
 - separation of sister chromatids

- Checkpoints
 - process is assessed & possibly halted

There’s no turning back, now!
Checkpoint control system

- Checkpoints
 - cell cycle controlled by **STOP** & **GO** chemical signals at critical points
 - signals indicate if key cellular processes have been completed correctly
Checkpoint control system

- 3 major checkpoints:
 - G_1/S
 - can DNA synthesis begin?
 - G_2/M
 - has DNA synthesis been completed correctly?
 - commitment to mitosis
 - spindle checkpoint
 - are all chromosomes attached to spindle?
 - can sister chromatids separate correctly?
G₁/S checkpoint

- **G₁/S checkpoint** is most critical
 - primary decision point
 - "restriction point"
 - if cell receives "**GO**" signal, it divides
 - internal signals: cell growth (size), cell nutrition
 - external signals: "growth factors"
 - if cell does **not** receive signal, it exits cycle & switches to **G₀** phase
 - non-dividing, working state
G₀ phase

- **G₀ phase**
 - non-dividing, differentiated state
 - most human cells in G₀ phase

- liver cells
 - in G₀, but can be “called back” to cell cycle by external cues

- nerve & muscle cells
 - highly specialized
 - arrested in G₀ & can never divide
Activation of cell division

- How do cells know when to divide?
 - cell communication signals
 - chemical signals in cytoplasm give cue
 - signals usually mean proteins
 - activators
 - inhibitors

experimental evidence: Can you explain this?
“Go-ahead” signals

- Protein signals that promote cell growth & division
 - internal signals
 - “promoting factors”
 - external signals
 - “growth factors”

- Primary mechanism of control
 - phosphorylation
 - kinase enzymes
 - either activates or inactivates cell signals
Cell cycle signals

- Cell cycle controls
 - cyclins
 - regulatory proteins
 - levels cycle in the cell
 - Cdk’s
 - cyclin-dependent kinases
 - phosphorylates cellular proteins
 - activates or inactivates proteins
 - Cdk-cyclin complex
 - triggers passage through different stages of cell cycle
Cyclins & Cdk's

- Interaction of Cdk's & different cyclins triggers the stages of the cell cycle.
G₂ / M checkpoint
- Replication completed
- DNA integrity

Spindle checkpoint
- Chromosomes attached at metaphase plate

MPF = Mitosis Promoting Factor
APC = Anaphase Promoting Complex

G₁ / S checkpoint
- Growth factors
- Nutritional state of cell
- Size of cell

Cdk / G₂ cyclin (MPF)
Active
Inactive

Cdk / G₁ cyclin
Active
Inactive
Cyclin & Cyclin-dependent kinases

- CDKs & cyclin drive cell from one phase to next in cell cycle
 - proper regulation of cell cycle is so key to life that the **genes for these regulatory proteins have been highly conserved** through evolution
 - the genes are basically the same in yeast, insects, plants & animals (including humans)
External signals

- **Growth factors**
 - coordination between cells
 - protein signals released by body cells that stimulate other cells to divide
 - **density-dependent inhibition**
 - crowded cells stop dividing
 - each cell binds a bit of growth factor
 - not enough activator left to trigger division in any one cell
 - **anchorage dependence**
 - to divide cells must be attached to a substrate
 - “touch sensor” receptors

Growth factor signals

- Growth factor
- Cell surface receptor
- Protein kinase cascade
- Nuclear membrane
- Nuclear pore
- Cell division
- Chromosome
- Cdk
- Rb
- E2F
- Cytoplasm
- Nucleus
Example of a Growth Factor

- **Platelet Derived Growth Factor (PDGF)**
 - made by platelets in blood clots
 - binding of PDGF to cell receptors stimulates cell division in fibroblast (connective tissue)
 - heal wounds

Don’t forget to mention **erythropoietin**! (EPO)
Growth Factors and Cancer

- Growth factors can create cancers
 - **proto-oncogenes**
 - normal growth factor genes that become oncogenes (cancer-causing) when mutated
 - stimulates cell growth
 - if switched “ON” can cause cancer
 - example: RAS (activates cyclins)
 - **tumor-suppressor genes**
 - inhibits cell division
 - if switched “OFF” can cause cancer
 - example: p53
Cancer & Cell Growth

- Cancer is essentially a failure of cell division control
 - unrestrained, uncontrolled cell growth
- What control is lost?
 - lose checkpoint stops
 - gene p53 plays a key role in G\(_1\)/S restriction point
 - p53 protein halts cell division if it detects damaged DNA
 - options:
 - stimulates repair enzymes to fix DNA
 - forces cell into G\(_0\) resting stage
 - keeps cell in G\(_1\) arrest
 - causes apoptosis of damaged cell
- **ALL** cancers have to shut down p53 activity

p53 discovered at Stony Brook by Dr. Arnold Levine
p53 — master regulator gene

NORMAL p53

Step 1
DNA damage is caused by heat, radiation, or chemicals.

Step 2
DNA repair enzyme is activated to repair damaged DNA.

Step 3
p53 allows cells with repaired DNA to divide.

ABNORMAL p53

Step 1
DNA damage is caused by heat, radiation, or chemicals.

Step 2
The p53 protein fails to stop cell division and repair DNA. Cell divides without repair to damaged DNA.

Step 3
Damaged cells continue to divide. If other damage accumulates, the cell can turn cancerous.
Development of Cancer

- Cancer develops only after a cell experiences ~6 key mutations (“hits”)
 - unlimited growth
 - turn on growth promoter genes
 - ignore checkpoints
 - turn off tumor suppressor genes (p53)
 - escape apoptosis
 - turn off suicide genes
 - immortality = unlimited divisions
 - turn on chromosome maintenance genes
 - promotes blood vessel growth
 - turn on blood vessel growth genes
 - overcome anchor & density dependence
 - turn off touch-sensor gene

It’s like an out of control car!
What causes these “hits”?

- Mutations in cells can be triggered by
 - UV radiation
 - chemical exposure
 - radiation exposure
 - heat
 - cigarette smoke
 - pollution
 - age
 - genetics
Tumors

- Mass of abnormal cells
 - Benign tumor
 - abnormal cells remain at original site as a lump
 - p53 has halted cell divisions
 - most do not cause serious problems & can be removed by surgery
 - Malignant tumors
 - cells leave original site
 - lose attachment to nearby cells
 - carried by blood & lymph system to other tissues
 - start more tumors = metastasis
 - impair functions of organs throughout body
Traditional treatments for cancers

- Treatments target rapidly dividing cells
 - high-energy radiation
 - kills rapidly dividing cells
 - chemotherapy
 - stop DNA replication
 - stop mitosis & cytokinesis
 - stop blood vessel growth
New “miracle drugs”

- Drugs targeting proteins (enzymes) found only in cancer cells
 - Gleevec
 - treatment for adult leukemia (CML) & stomach cancer (GIST)
 - 1st successful drug targeting only cancer cells

Novartes

Gleevec: HOW IT WORKS

without Gleevec

- CML Enzyme
- ATP
- Cancer Protein
- CML

with Gleevec

- CML Enzyme
- Gleevec
- ATP
- Cancer Protein
- CML